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Minimally nonlocal quantum electrodynamics without 
potentials for bound electrons 

M I Shirokov 
Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980, 
USSR 

Received 15 August 1979, in final form 12 November 1979 

Abstract. In the formulation of QED which does not use potentials the charged field + 
interacts nonlocally with the electromagnetic fields E and H. The suggested formulation in 
the case of bound electrons has a minimally nonlocal interaction as compared with the other 
known formulations without potentials. Some applications of the new formulation are 
discussed. 

1. Introduction 

As is well known, one ought to use the Coulomb gauge and not the Lorentz one when 
considering bound electrons (see e.g. Heitler 1954). The Coulomb gauge is an example 
of the QED formulations in which the charged field II, interacts nonlocally with the 
electromagnetic fields E and H, and the gauge group is absent. Indeed, the transverse 
potential A, can be replaced by 

(see Belinfante 1962). Other formulations of this type are given in e.g. DeWitt (1962), 
Mandelstam (1962) and Ogievetsky et a1 (1962). They can be characterised as 
formulations without potentials (WP formulations). 

All these formulations are strongly nonlocal theories. Thus, in the Coulomb gauge, 
both the Coulomb interaction of the charges and their interaction with the magnetic 
field by means of (1) can be characterised by the ‘form factor’ l / / x  - y 1 which has infinite 
range. An analogous situation holds in other WP formulations (see 9 2 below). 

We suggest in § 2 one more WP form of QED which, for bound charges, turns out to 
be the least nonlocal as compared with all the known WP formulations. Its range of 
nonlocality coincides with the bound-charge localisation region. 

Some variants and generalisations of the new form are given in 9 3. Possible 
applications and connections with other approaches are discussed in 9 4. 

In the Appendix we stress a difference between the DeWitt (1962) and Mandelstam 
(1962) approaches which is essential for the derivation of the important equation (8). 
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2068 M I  Shirokov 

2. Minimally nonlocal WP form of the QED 

2.1. 

The new form will be constructed starting with the Coulomb gauge. The electrons and 
positrons will be described by the new spinor field 

Here 4, A L, 4’ are the Schrodinger operators, the integral 

is taken along the straight line connecting a point r with the point x. We set c = 1 and 
h = 1. A new element r is introduced in the theory by (2). If electrons of the physical 
system under construction are localised somehow in a certain volume V, then one can 
take for r the centre of V. An external potential U is introduced in the theory to 
produce such a localisation. 

Constructions of the type (2) are known, see e.g. Dirac (1934, 1955), Capps et a1 
(1955), DeWitt (1962) and Mandelstam (1962). But here the purpose of (2) is not to 
obtain the gauge-invariant charge field (both $ and 4’ in (2) are such fields), the 
intention of (2) is to get a less nonlocal WP theory?. 

2.2. 

We shall represent (2) as a canonical transformation of the type $ ’ = S ’ $ S  and 
introduce, besides I+!/, new operators E’, H ’  for the photons. Then the equal-time 
commutators for $’, E’,  H ‘  will be the same as for 4, E, H and new electron operators 
will be independent of the (new) photon operators. Let 

X ’  

S = exp( -ie d3x’p(x’) ( A , .  d o ) .  (3) 

Here p = $’$ is the charge density, the integral d3x’ is over the whole space. With the 
help of the equation 

eABe-A = B + [ A ,  B ]  + $A, [A,  B ] ]  + . . . (4) 

one can verify that the equation +’ = St$S (calculated by means of the equal-time 
commutators) coincides with (2). We have A: = A ,  and H ’ =  H so that S changes, 
besides $, only the electric transverse field E ,  

1) x’ 

E : , ( x )  = StEL,S =E,, + e  d3x’p(x’) J C d& d[,,Sf,,,(t-x) J r n  
( 5 )  

+ Our motive for (2) can be described in terms which will be introduced in 5 4: we look for the quasigradient- 
invariant charge field (see (27) below). 



Minimally nonlocal electrodynamics without potentials 2069 

where m, n = 1 ,2 ,3 .  To obtain ( 5 )  we use (4) and the commutator 

[ A I k ( Y ) ,  E L m ( x ) l  

see e.g. (14.17) in Bjorken and Drell (1965). 

2.3. 

Now our aim is to rewrite the Coulomb gauge Hamiltonian H in terms of the new 
operators. We take H from 8 15.2 in Bjorken and Drell (1965): 

H = $  I d3x(H2(x )+E; (x ) )+ I  d3x + , ' ( x ) [ ~ ~ ( - i V - e A . ( x ) ) + p m ] + ( ~ )  

The last term contains the external potential U, see above. In appendix A the following 
equation is derived: 

1 

d ( ~ ) =  - (Y dcY(X-r)XH(r+(Y(x-r)) Io 
(x means the vector product). Using (8) we get 

(9)  

Let us multiply both sides of (10) by (Cl'+ = +' exp(ie 5) and write the result in the form 

+'(-iV-eA,(x))+ = $'t(-iV-ed(x))+'. (11) 

Further using ( 5 ) ,  (6) and the equation div E: = 0 we obtain 

(12) 
P ( Y ) P ( Y ' )  + 2  I d3y Qep(y) - Q2 

4nly - r /  4 ~ l r - r l '  
-e2 d3y d3y' 

477 IY - Y ' l  

Here Q = e  5 d3x$"(x)+'(x) is the total-charge operator. The next to last term is the 
Coulomb interaction of the electron field with a point charge of magnitude Q at point r. 
The last term is infinite and describes the Coulomb self-interaction of this charge. It 
will be omitted for the same reason as the Coulomb self-interaction in the Coulomb 
gauge. 
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2.4. 

Inserting (11) and (12) into (7) one gets the desired expression for H in terms of 
4‘, E:, H’= H :  

.. .x .x’ 

++e2 J J d3x d3x’ p ( x ) p ( x ’ )  J J ~ ( ~ ’ ( 6  -&’)(de. d&’) 
r r  

The Coulomb interaction term in (7) disappears (it is cancelled by the fourth term of 
(12)) and the last two terms in (13) substitute for it. The field $’ interacts with the 
magnetic field by means of d ( x ) ,  see (9), and with the transverse electric field E; by 
means of 

1 

= e I p ( x )  d3x Io d a ( x  - r) . E:(r + a ( x  - r)). 

Both these interactions are nonlocal: $’(x) interacts with H‘(0 and E: (6) taken at the 
points f of the straight line, connecting x with r. If the electrons are localised in a volume 
V, the region of nonlocality is confined to V. 

In the De Witt (1962) formulation, the charge field at the point x interacts with E 
and H taken at the points of a line going from x to infinity. The Mandelstam (1962) 
formulation has the same type of nonlocality (see, e.g., his equations (3.11)). The 
Coulomb gauge nonlocality was characterised in 0 1. 

The WP formulations by Ogievetsky and Polubarinov (1962), Levy (1964) and 
Rohrlich and Strocchi (1965) are still more nonlocal (not only in space but also in time). 

So, in the form of QED obtained, the interaction is minimally nonlocal as compared 
with the other WP forms and it seems that still less nonlocal forms do not exist. We 
conclude this section with two notes. 

2.5. 

The relation between qY, d and 4, A, can be written in the form of the (operator) gauge 
transformation 

Indeed, (15) is merely equations (2) and (8) written in terms of the Heisenberg 
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operators. Note that the total electric field is the same in the new and the Coulomb 
gauge but in the former it should be expressed in terms of E:: E, in E = 
E , - V J ' [ d 3 y p ( y ) / ( 4 r l x - y l ) ]  must be replaced by E: using ( 5 ) .  Instead of the 
condition div A, = 0 the new gauge is characterised by the equation 

It can be verified by taking the integral (16) of the equation d = A, + V h  (see (15)) or of 
(9). 

2.6. 

Let us show that the results of calculations with (13) do not depend upon the parameter 
r, which is explicitly present in the interaction terms of (13). Consider the interaction 
term (14). 

As the commutators between +', E:, H' are the same as in the Coulomb gauge we 
can assume for +', E:, H' the usual expansion in the creation-annihilation operators of 
the electron-positrons pairs a' ,  a r t ,  b', 6"and the transverse photons c', c'+. Of course, 
(2) means that a ' ,  a' t ,  when expanded over the Coulomb gauge operators, will contain 
old photon operators c, c '. 

For 4' we must use the expansion over the proper functions of the Dirac equation 
Hamiltonian with the external potential U. They depend in fact upon x - r, if r is a 
centre of U. Therefore the matrix element ( / p i )  of the operator p(x) in (14) should 
depend upon x - r : ( I p 1 ) = M(x - r). The integral 

Jd 'xM(x- r )  I , ' da (x - r ) .E ' ( r+a (x - r ) )  (17) 

after the variable change x'  = x - r turns into 

1 

d3x' M(x')  1 d a  x' . E; ( r  + ax) .  
0 

The operator E: (x) can be expanded not over exp(ircox) but over exp[irco(x - r)]: 

This expansion is convenient for calculations in the dipole approximation, when E: (8)  
in (14) or in (18) is replaced by E>(r). As the left-hand side of (19) does notdepend 
upon r, we must assume that c ' ( K ,  A )  in the right-hand side does depend upon r. If the 
expansion (19) is adopted, E: (r +ax ' )  will depend upon r only via c ' ( K ,  A ) .  We see that 
matrix elements of (14) do not depend explicitly upon r. Its implicit r-dependence 
through the creation-annihilation operators does not influence the result if one chooses 
for these operators the same Fock representation, irrespective of concrete values of r. 

The consideration is applicable for all other r-dependent terms of (13). So, the 
physical consequences of (13) do not depend upon r as they should for isolated physical 
systems. 
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3. Modifications and generalisations 

3.1. 

Instead of taking J A, . dg  along the straight line we may integrate along a curved path. 
But the theory then acquires additional parameters besides r, e.g. the path curvature. 

3.2. 

The points 6 in J A J ~ ) .  d6  have the same time coordinates. Space-like paths can be 
introduced. But this generalisation would look more natural if one were to obtain the 
new form from the covariant Lorentz gauge rather than from the Coulomb one. Starting 
with the former would have both virtues and demerits, the latter being related to dealing 
with the Lorentz condition a,A,Q, = 0. 

3.3. 

One can perform an averaging over a set of points r. For this purpose one can insert 
J d3r m (r) in front of the integral 5: in each place in § 2 where 5: appears. The measure 
function m ( r )  must be normalised to unity. If the averaging set is in the electron 
localisation region V, the minimal nonlocality of the interaction will not be spoiled. In 
particular, one can assume the boundary of V to be this set. If one averages uniformly 
over the minimal sphere containing V, the last term in (13) turns into Q2/R ,  R being the 
sphere radius. It becomes a c-number, in fact, and can be omitted. So, the interaction 
of the electrons with the fictitious charge Q vanishes if Q is spread over the sphere. It is 
possible to show that when R -+ 00 the transformation S (see (3)) tends to 1, and the new 
form turns into the Coulomb gauge. 

3.4. Mixed gauge 

The integral over x'  in (3) is taken over the finite volume V, where the electrons are 
localised, rather than over the whole space. In this case the Hamiltonian density has a 
different appearance outside and inside V. 

3.5. 

The electrons can be localised not in one but in several disjoint regions VI, V2,  . . . . 
Then the minimally nonlocal form will be obtained by dividing the whole space into the 
parts W1, W2, . . . such that V,, c W,, (and C W,, is all space) and putting 

if one transforms a field at the point x E W,, (r,, is a centre of V,t). The other form for S is 

S = exp( -ie [ d3x 1 n,, p ( x )  [ *  (A,. d o )  
11 rn 

where 17, = 1 if x E W,, and U,, = 0 if x is out of W,,. The following different definition of 
n,, is possible: n,, = 1 if x E V,, and n,, = 0 if xa: V,,. In this case a generalisation of 8 3.4 
is obtained. 
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3.6. 

Quantum electrodynamics with several charged fields. If one has two fields, electron $e 

and proton &, then 

This form of S gives minimally nonlocal interaction when both electrons and protons 
are localised in the same region V (e.g. in a crystal). 

4. Applications 

We discuss applications of the new form, taking as an example one nonrelativistic 
spinless charged particle (the name ' 'electron' will be retained) interacting with the 
quantised electromagnetic field. The Coulomb gauge Hamiltonian is 

H = ( p  - e A L ( q ) ) ' / 2 m  + U ( q - r ) + t [  d3x(H2+E:). ( 2 2 )  

The replacement p - e A  I -+ p '  - e d  (compare ( 1  1)) is accomplished by the trans- 
formation 

S = exp( -ie Ioq ( A ,  . d o )  

where 4 is the electron coordinate. When expressed in terms of p ' =  S'pS and 
E: = StE,S the Hamiltonian ( 2 2 )  is recorded as follows: 

The last term is the Coulomb interaction of the electron with the fictitious charge Q, 
which is now equal to e (compare ( 1 3 ) ) .  

4.1. 

In the dipole approximation when E: (6) and H ( 5 )  in d (see ( 9 ) )  are replaced by E: ( r )  
and H ( r )  one has 

(25 )  (E,(&) . d5) = E: (r ) (4  - r ) ,  ,&= -- 2 4  - r )  x H ( r ) .  

Let r = 0 in the following. If one also takes into account the next terms of the E: (5)  and 
H ( 5 )  multipole expansions, one gets from ( 2 4 )  the Hamiltonian (78)  of Power and 
Zienau (1959)  (for the case of a single electron). The authors arrived at (78) from the 
Coulomb gauge using a unitary transformation, which can be obtained from (23 )  by 
replacing A,(5)  by its expansion in the Maclaurin series. 
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4.2. 

The dipole-Coulomb-gauge interaction terms are effectively replaced in the new WP 
form by E:q (the nonrelativistic electron interaction with H by means of d, see the first 
term of (24 ) ,  can be neglected). The interaction E,q became famous in connection with 
the problem of the hydrogen 22S1,2 level shapet. The shape obtained in the Lamb 
experiments did not agree with the usual calculation using - p A / m ,  but did agree with 
the one using Eq. This problem is important for the Lamb shift theory: the shift is much 
less than the level width and one must find the line centre precisely. Detailed discussion 
and references can be found in Fried (1973). It was there shown that a more accurate 
calculation of the level shape using - p A / m  tends to agree with the E4 calculation, but 
the latter possesses the advantage of simplicity. Let us remind ourselves in this 
connection that the new and Coulomb formulations differ only by the gauge change 
(15). But we are going to discuss another problem where the equivalence turns out to be 
a more delicate question. 

4.3. 

Consider the physical system which is described by the Hamiltonian (22 ) ,  the potential 
U localising the electron inside V. Let the system be in a stationary state till an external 
current J is switched on at an instant to, inside the remote region W ( H  acquires the 
additional term 5 d3x JA). Then the fields E and H change at the instant t > to only 
inside the ‘light front’, i.e. inside the region W,, whose boundary is at a distance c ( t  - to) 
from the W boundary. It was shown in Shirokov (1978) that the Heisenberg operator 
A, under these conditions changes outside W,, acquiring a gradient 

( 2 6 )  
This ‘acausal’ behaviour follows from (1). The function A (x, t )  is harmonic, AA = 0, but 
only outside W,$. The electron momentum also changes outside W, : p + p  + eVA. Note 
that the electron velocity d q / d t  = ( p  - e A ( q ) ) / m  behaves causally (see e.g. 0 3 in 
Shirokov (1978)) as does the quantised field 9: $ + (I, exp(ieA). Instead of the momen- 
tum change one can speak about the electron wavefunction change: d ( q ) +  
4 ( q )  exp(ieh ). These changes were called quasigradient transformations in Shirokov 
(1978), because they have the form of gauge (gradient) transformations but only outside 
W,. They must not entail any observable effects in the region V at the insant t, if the 
distance R between W and V is greater than c ( t  - to). 

However, the transformation 4(4)  + 4(q) exp(ieA (4)) does not reduce to a phase 
change in the momentum representation. 1t.entails a change in the momentum 
distribution which must also be considered as nonobservable (fictitious). At the 
instants t when W, partially covers V, the I$(p)I2 change turns out to be only partially 
fictitious. So does the electron energy distribution, if the energy operator is p 2 / 2 m  + 
U ( q ) .  In other words, a part of the electron excitation probability in the Coulomb 
gauge may be fictitious under the described conditions. 

The absence of the stated difficulty is the advantage of the new WP form. For 
instance, when $(x) + $(x) exp(ieA (x)) and A , ( x )  + A , ( x )  +VA (x) the operator $’ (see 

t The Eq interaction was known long ago, but for the case when E is an external field (not quantised as in 
Power and Zienau (1959) and here). In particular, it was used in the Stark effect calculation. This case has 
also been discussed in the recent papers by Kuo (1976) and Forney er al (1977). 
$ If A were harmonic everywhere and A, is to vanish at infinity, then VA = 0 everywhere. For this reason the 
gauge group is absent in the Coulomb gauge. 

A ,(x, t )  + A ,(x, t )  + VA (x, t ) .  
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(2)) acquires only the phase multiplier which does not depend upon x 

(ClL) + (Clh exp(ieh ( r ) ) .  (27) 
This transformation changes neither the coordinate nor the momentum distributions. 
One can directly show that p ’  = StpS, unlike p ,  does not change when W, does not cover 
the electron localisation region V. 

So, we shall get the same results in the Coulomb gauge and in the new WP form only 
if we are able to get rid of the fictitious parts of the Coulomb gauge calculations. 
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Appendix 

We stress that the Mandelstam (1962) and DeWitt (1962) WP formulations differ 
essentially, in spite of the formal resemblance of the starting expressions $’= 
(Cl exp(-ie J A, d t@).  In the Mandelstam paper the integration path is not fixed and $’ 
depends upon the path variation, see (2.8). Due to the definition (2.11) of the 
‘gauge-invariant derivative’ one has 

- ( A .  d t  - A .  d t )  ( A x M ) - ’  = A,(x)  

where JVm , the latter integral being taken over the 
straight line, connecting x and x + A x M ,  

We adhere to the DeWitt approach in which the integration path is fixed. The 
coordinates 5, of a point of the path leading from r to x are functions 4,(x, cy)  which 
depend on one parameter c y :  6 = 4(x, cy). We have q5,(x, 0) = r ,  and dm(x ,  1)  = x,. 
The most simple path is a straight line 6 = r + cy (x - r ) .  

Now the derivative ( a / a x k )  J A . d t  must be defined and calculated as follows: 

lim ( /, 

x +Axu a x  
a x ,  [-,A.d&= Ax,+O lim I-: 

x + A x u  x + A x u  is defined as the sum J?m + 5, 

x + e k A  

A d t  - 1,’ A d5) 
A - 0  

x i e k A  

=lim’(jr A +jx r + e k A  +jxr-jx x + e k A  ) 
=lim- A dC+Ak(x) .  

A ’ f 
Here ek is the unit vector along kth axis. We have added and subtracted the integral 
J:+ekA (A . d t )  = A k  ( x ) A .  The integral 4 is taken over the closed path r + x + ek A + x + r 
(see figure 1). According to the Stokes formula 
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Figure 1. 

The point 6 of the integration surface in SJ' is the sum of the vectors 4 ( x , a )  and 
pa = p [ 4 ( x + e k A ,  a ) - 4 ( x ,  a ) ] .  The vector a is shown by the dotted line in figure 1. 
When p changes from 0 to 1,  6 goes from 4(x ,  a )  to 4 ( x  +ekA,  a ) :  

6=d(x ,  a ) + P ( @ ( X + e k A ,  a ) - 4 ( x ,  a ) )  

a 
= 4 (X, a 1 + P A  - 4 (x, a 1. (A.3) 

a x k  

Neglecting terms of the order A* we have 

(A.4) 
9 ( 5 m ? t n )  ~ a 4 m  84, a 4 m  

- -) A .  
ga((Y,P) ( aa a x k  d a  a x k  

The argument 6 of Fm, in (A.2) can be put equal to &(x, a ) ,  see (A.3), so that 

1 -1 a "  ( A . d l ) = I  d a F m n * * + A k ( x )  

I, m,n lo 

a x k  r 0 a& d x k  

If 6 = 4(x ,  a )  = r + a ( x  - r )  we have 
1 1 

d a  Fmn. (X - r ) m 8 n k a  = - da[(x - r )  X H ] k .  (A.7) 

Inserting (A.7) into (A.6) gives equation (8) of 8 2 .  
Capps and Holladay (1955) also introduce J' A . d 6  over a finite line, but equation 

(16) from (Capps and Holladay 1955) for V A .  d 6  is wrong. This is the reason for the 
above derivation. Note that our result is consistent with the DeWitt (1962) equation 
(7). 
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